Abstract
Peralihan pelanggan merupakan fenomena dimana pelanggan perusahaan berhenti membeli atau berinteraksi sehingga sangat penting bagi perusahaan khususnya perbankan untuk memprediksi kemungkinan churn pelanggan dan hasilnya dapat digunakan untuk membantu retensi pelanggan dan bagian dari strategi perusahaan. Makalah ini menyajikan analisis dan prediksi churn pelanggan dengan menggunakan lima model berbeda yaitu Kneighbors Classifier, Logistic Regression, Linear SVC, Random Tree Classifier dan Random Forest Classifier. Berdasarkan hasil pengujian pendekatan model Random Forest Classifier dan Kneighbors Classifier lebih baik dari pada model lain dengan akurasi sebesar 86% dan 84%. Rekayasa fitur dengan pendekatan Anova dan Chi Square memiliki pengaruh yang signifikan terhadap peningkatan kinerja model prediksi.
Cite
CITATION STYLE
Husein, A. M., & Harahap, M. (2021). Pendekatan Data Science untuk Menemukan Churn Pelanggan pada Sector Perbankan dengan Machine Learning. Data Sciences Indonesia (DSI), 1(1), 8–13. https://doi.org/10.47709/dsi.v1i1.1169
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.