Pendekatan Data Science untuk Menemukan Churn Pelanggan pada Sector Perbankan dengan Machine Learning

  • Husein A
  • Harahap M
N/ACitations
Citations of this article
182Readers
Mendeley users who have this article in their library.

Abstract

Peralihan pelanggan merupakan fenomena dimana pelanggan perusahaan berhenti membeli atau berinteraksi sehingga sangat penting bagi perusahaan khususnya perbankan untuk memprediksi kemungkinan churn pelanggan dan hasilnya dapat digunakan untuk membantu retensi pelanggan dan bagian dari strategi perusahaan. Makalah ini menyajikan analisis dan prediksi churn pelanggan dengan menggunakan lima model berbeda yaitu Kneighbors Classifier, Logistic Regression, Linear SVC, Random Tree Classifier dan Random Forest Classifier. Berdasarkan hasil pengujian pendekatan model Random Forest Classifier dan Kneighbors Classifier lebih baik dari pada model lain dengan akurasi sebesar 86% dan 84%. Rekayasa fitur dengan pendekatan Anova dan Chi Square memiliki pengaruh yang signifikan terhadap peningkatan kinerja model prediksi.

Cite

CITATION STYLE

APA

Husein, A. M., & Harahap, M. (2021). Pendekatan Data Science untuk Menemukan Churn Pelanggan pada Sector Perbankan dengan Machine Learning. Data Sciences Indonesia (DSI), 1(1), 8–13. https://doi.org/10.47709/dsi.v1i1.1169

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free