Aggregating Different Scales of Attention on Feature Variants for Tomato Leaf Disease Diagnosis from Image Data: A Transformer Driven Study

9Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Tomato leaf diseases can incur significant financial damage by having adverse impacts on crops and, consequently, they are a major concern for tomato growers all over the world. The diseases may come in a variety of forms, caused by environmental stress and various pathogens. An automated approach to detect leaf disease from images would assist farmers to take effective control measures quickly and affordably. Therefore, the proposed study aims to analyze the effects of transformer-based approaches that aggregate different scales of attention on variants of features for the classification of tomato leaf diseases from image data. Four state-of-the-art transformer-based models, namely, External Attention Transformer (EANet), Multi-Axis Vision Transformer (MaxViT), Compact Convolutional Transformers (CCT), and Pyramid Vision Transformer (PVT), are trained and tested on a multiclass tomato disease dataset. The result analysis showcases that MaxViT comfortably outperforms the other three transformer models with (Formula presented.) overall accuracy, as opposed to the (Formula presented.) accuracy achieved by EANet, (Formula presented.) by CCT, and (Formula presented.) by PVT. MaxViT also achieves a smoother learning curve compared to the other transformers. Afterwards, we further verified the legitimacy of the results on another relatively smaller dataset. Overall, the exhaustive empirical analysis presented in the paper proves that the MaxViT architecture is the most effective transformer model to classify tomato leaf disease, providing the availability of powerful hardware to incorporate the model.

Cite

CITATION STYLE

APA

Hossain, S., Tanzim Reza, M., Chakrabarty, A., & Jung, Y. J. (2023). Aggregating Different Scales of Attention on Feature Variants for Tomato Leaf Disease Diagnosis from Image Data: A Transformer Driven Study. Sensors, 23(7). https://doi.org/10.3390/s23073751

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free