Abstract
Among subfamilies of G-protein-coupled receptors, agonists initiate several cell signaling events depending on the receptor subtype (R) and the type of G-protein (G) or effector molecule (E) expressed in a particular cell. Determinants of signaling specificity/efficiency may operate at the R-G interface, where events are influenced by cell architecture or accessory proteins found in the receptor's microenvironment. This issue was addressed by characterizing signal transfer from R to G following stable expression of the α2A/D adrenergic receptor in two different membrane environments (NIH-3T3 fibroblasts and the pheochromocytoma cell line, PC-12). Receptor coupling to endogenous G-proteins in both cell types was eliminated by pertussis toxin pretreatment and R-G signal transfer restored by reconstitution of cell membranes with purified brain G-protein. Thus, the receptor has access to the same population of G-proteins in the two different environments. In this signal restoration assay, agonist-induced activation of G was 3-9-fold greater in PC-12 as compared with NIH-3T3 α2-adrenergic receptor transfectants. The cell-specific differences in signal transfer were observed over a range of receptor densities or G-protein concentration. The augmented signal transfer in PC-12 versus NIH-3T3 transfectants occurred despite a 2-3-fold lower level of receptors existing in the R-G-coupled state (high affinity, guanyl-5′-yl imidodiphosphate-sensitive agonist binding), suggesting the existence of other membrane factors that influence the nucleotide binding behavior of G-protein in the two cell types. Detergent extraction of PC-12 but not NIH-3T3 membranes yielded a heat-sensitive, macromolecular entity that increased 35S-labeled guanosine 5′-Ο-(thiotriphosphate) binding to brain G-protein in a concentration-dependent manner. These data indicate that the transfer of signal from R to G is regulated by a cell type-specific, membrane-associated protein that enhances the agonist-induced activation of G.
Cite
CITATION STYLE
Sato, M., Kataoka, R., Dingus, J., Wilcox, M., Hildebrandt, J. D., & Lanier, S. M. (1995). Factors determining specificity of signal transduction by G-protein-coupled receptors: Regulation of signal transfer from receptor to G-protein. Journal of Biological Chemistry, 270(25), 15269–15276.
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.