Optimization of vortex-assisted dispersive liquid-liquid microextraction for the simultaneous quantitation of eleven non-anthocyanin polyphenols in commercial blueberry using the multi-objective response surface methodology and desirability function approach

7Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

In the present study, 11 non-anthocyanin polyphenols, gallic acid, protocatechuate, vanillic acid, syringic acid, ferulic acid, quercetin, catechin, epicatechin, epigallocatechin gallate, gallocatechin gallate and epicatechin gallate—were firstly screened and identified from blueberries using an ultra performance liquid chromatography–time of flight mass spectrography (UPLC-TOF/MS) method. Then, a sample preparation method was developed based on vortex-assisted dispersive liquid-liquid microextraction. The microextraction conditions, including the amount of ethyl acetate, the amount of acetonitrile and the solution pH, were optimized through the multi-objective response surface methodology and desirability function approach. Finally, an ultra performance liquid chromatography–triple quadrupole mass spectrography (UPLC-QqQ/MS) method was developed to determine the 11 non-anthocyanin polyphenols in 25 commercial blueberry samples from Sichuan province and Chongqing city. The results show that this new method with high accuracy, good precision and simple operation characteristics, can be used to determine non-anthocyanin polyphenols in blueberries and is expected to be used in the analysis of other fruits and vegetables.

Cite

CITATION STYLE

APA

Xue, Y., Xu, X. S., Yong, L., Hu, B., Li, X. D., Zhong, S. H., … Qing, L. S. (2018). Optimization of vortex-assisted dispersive liquid-liquid microextraction for the simultaneous quantitation of eleven non-anthocyanin polyphenols in commercial blueberry using the multi-objective response surface methodology and desirability function approach. Molecules, 23(11). https://doi.org/10.3390/molecules23112921

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free