Abstract
A K3 category is by definition a CalabiYau category of dimension two. Geometrically K3 categories occur as bounded derived categories of (twisted) coherent sheaves on K3 or abelian surfaces. A K3 category is generic if there are no spherical objects (or just one up to shift). We study stability conditions on K3 categories as introduced by Bridgeland and prove his conjecture about the topology of the stability manifold and the autoequivalences group for generic twisted projective K3, abelian surfaces, and K3 surfaces with trivial Picard group. © 2008 Foundation Compositio Mathematica.
Author supplied keywords
Cite
CITATION STYLE
Huybrechts, D., MacRì, E., & Stellari, P. (2008). Stability conditions for generic K3 categories. Compositio Mathematica, 144(1), 134–162. https://doi.org/10.1112/S0010437X07003065
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.