Application of multivariate statistical analysis to identifywater sources in a Coastal Gold Mine, Shandong, China

20Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

Submarine mine water inrush has become a problem that must be urgently solved in coastal gold mining operations in Shandong, China. Research on water in subway systems introduced classifications for the types of mine groundwater and then established the functions used to identify each type of water sample. We analyzed 31 water samples from -375 m underground using multivariate statistical analysis methods. Cluster analysis combined with principle component analysis and factor analysis divided water samples into two types, with one type being near the F3 fault. Principal component analysis identified four principle components accounting for 91.79% of the total variation. These four principle components represented almost all the information about the water samples, which were then used as clustering variables. A Bayes model created by discriminant analysis demonstrated that water samples could also be divided into two types, which was consistent with the cluster analysis result. The type of water samples could be determined by placing Na+ and CHO3- concentrations of water samples into Bayes functions. The results demonstrated that F3, which is a regional fault and runs across the whole Xishan gold mine, may be the potential channel for water inrush, providing valuable information for predicting the possibility of water inrush and thus reducing the costs of the mining operation.

Cite

CITATION STYLE

APA

Liu, G., Ma, F., Liu, G., Zhao, H., Guo, J., & Cao, J. (2019). Application of multivariate statistical analysis to identifywater sources in a Coastal Gold Mine, Shandong, China. Sustainability (Switzerland), 11(12). https://doi.org/10.3390/SU11123345

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free