We examine in this paper the accuracy of some approximations of the Baer-Nunziato two-phase flow model. The governing equations and their main properties are recalled, and two distinct numerical schemes are investigated, including a classical second-order extension relying on symmetrizing variables. Shock tube cases are considered, and two simple Riemann problems based on well-balanced initial data are detailed. These enable to recover the expected convergence rates. However, it is shown that these simple cases are indeed very difficult and that the accuracy of basic schemes is rather poor. Résumé. Approximation des solutions du modèle de Baer-Nunziato On examine ici la précision des approximations obtenues pour le modèle diphasique de Baer-Nunziato. LeséquationsLeséquations du modèle et ses principales propriétés sont rappellées. Deux schémas distincts sont proposés, et des extensions classiques au second-ordre sont con-sidérées, utilisant les variables de symétrisation. Des cas tests de tubè a choc sont analysés, notamment deux cas utilisant des conditions initiales enéquilibreenéquilibre. Les taux de convergence attendus sont retrouvés, mais on montre que la précision des approximations de certainsprobì emes de Riemann est assez médiocre.
CITATION STYLE
Crouzet, F., Daude, F., Galon, P., Helluy, P., Hérard, J.-M., Hurisse, O., & Liu, Y. (2013). Approximate solutions of the Baer-Nunziato Model. ESAIM: Proceedings, 40, 63–82. https://doi.org/10.1051/proc/201340005
Mendeley helps you to discover research relevant for your work.