Abstract
Amorphous VO2 thin films are deposited by atomic layer deposition (ALD) using tetrakis[ethylmethylamino]vanadium (TEMAV) as vanadium precursor and water or ozone as the oxygen source. The crystallisation and oxidation behaviour is investigated for different oxygen partial pressures between ambient air and 3.7 Pa, resulting in phase formation diagrams on SiO2, TiN and Pt substrates, demonstrating a series of stable vanadium oxide phases in the VO2-V2O5 series. Most of the obtained phases exhibit lithium intercalation behaviour in the 1.5-4.5 V vs. Li+/Li potential range, and demonstrate high volumetric capacities in the order of V2O5 < VO2 (B) < V6O13 < V3O7 < V4O9, with the latter at more than twice the capacity of the best commercial cathode materials.
Cite
CITATION STYLE
Mattelaer, F., Geryl, K., Rampelberg, G., Dobbelaere, T., Dendooven, J., & Detavernier, C. (2016). Atomic layer deposition of vanadium oxides for thin-film lithium-ion battery applications. RSC Advances, 6(115), 114658–114665. https://doi.org/10.1039/C6RA25742A
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.