Abstract
The marine globin dehaloperoxidase-hemoglobin (DHP) from Amphitrite ornata was found to catalyze the H2O2-dependent oxidation of monohaloindoles, a previously unknown class of substrate for DHP. Using 5-Br-indole as a representative substrate, the major monooxygenated products were found to be 5-Br-2-oxindole and 5-Br-3-oxindolenine. Isotope labeling studies confirmed that the oxygen atom incorporated was derived exclusively from H2O2, indicative of a previously unreported peroxygenase activity for DHP. Peroxygenase activity could be initiated from either the ferric or oxyferrous states with equivalent substrate conversion and product distribution. It was found that 5-Br-3-oxindole, a precursor of the product 5-Br-3-oxindolenine, readily reduced the ferric enzyme to the oxyferrous state, demonstrating an unusual product-driven reduction of the enzyme. As such, DHP returns to the globin-active oxyferrous form after peroxygenase activity ceases. Reactivity with 5-Br-3-oxindole in the absence of H2O2 also yielded 5,5′-Br2-indigo above the expected reaction stoichiometry under aerobic conditions, and O2-concentration studies demonstrated dioxygen consumption. Nonenzymatic and anaerobic controls both confirmed the requirements for DHP and molecular oxygen in the catalytic generation of 5,5′-Br2-indigo, and together suggest a newly identified oxidase activity for DHP. © 2014 American Chemical Society.
Cite
CITATION STYLE
Barrios, D. A., D’Antonio, J., McCombs, N. L., Zhao, J., Franzen, S., Schmidt, A. C., … Ghiladi, R. A. (2014). Peroxygenase and oxidase activities of dehaloperoxidase-hemoglobin from Amphitrite ornata. Journal of the American Chemical Society, 136(22), 7914–7925. https://doi.org/10.1021/ja500293c
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.