Abstract
Processing aluminum alloys employing powder bed fusion of metals (PBF-LB/M) is be-coming more attractive for the industry, especially if lightweight applications are needed. Unfortu-nately, high-strength aluminum alloys such as AA7075 are prone to hot cracking during PBF-LB/M, as well as welding. Both a large solidification range promoted by the alloying elements zinc and copper and a high thermal gradient accompanied with the manufacturing process conditions lead to or favor hot cracking. In the present study, a simple method for modifying the powder surface with titanium carbide nanoparticles (NPs) as a nucleating agent is aimed. The effect on the micro-structure with different amounts of the nucleating agent is shown. For the aluminum alloy 7075 with 2.5 ma% titanium carbide nanoparticles, manufactured via PBF-LB/M, crack-free samples with a refined microstructure having no discernible melt pool boundaries and columnar grains are ob-served. After using a two-step ageing heat treatment, ultimate tensile strengths up to 465 MPa and an 8.9% elongation at break are achieved. Furthermore, it is demonstrated that not all nanoparticles used remain in the melt pool during PBF-LB/M.
Author supplied keywords
Cite
CITATION STYLE
Heiland, S., Milkereit, B., Hoyer, K. P., Zhuravlev, E., Kessler, O., & Schaper, M. (2021). Requirements for processing high-strength alznmgcu alloys with pbf-lb/m to achieve crack-free and dense parts. Materials, 14(23). https://doi.org/10.3390/ma14237190
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.