Multi-view multiple clustering

41Citations
Citations of this article
56Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Multiple clustering aims at exploring alternative clusterings to organize the data in meaningful groups from different perspectives. Existing multiple clustering algorithms are designed for single-view data. We assume that the individuality and commonality of multi-view data can be leveraged to generate high-quality and diverse clusterings. To this end, we propose a novel multi-view multiple clustering (MVMC) algorithm. MVMC first adapts multi-view self-representation learning to explore the individuality encoding matrices and the shared commonality matrix of multi-view data. It additionally reduces the redundancy (i.e., enhancing the individuality) among the matrices using the Hilbert-Schmidt Independence Criterion (HSIC), and collects shared information by forcing the shared matrix to be smooth across all views. It then uses matrix factorization on the individual matrices, along with the shared matrix, to generate diverse clusterings of high-quality. We further extend multiple co-clustering on multi-view data and propose a solution called multi-view multiple co-clustering (MVMCC). Our empirical study shows that MVMC (MVMCC) can exploit multi-view data to generate multiple high-quality and diverse clusterings (co-clusterings), with superior performance to the state-of-the-art methods.

Cite

CITATION STYLE

APA

Yao, S., Yu, G., Wang, J., Domeniconi, C., & Zhang, X. (2019). Multi-view multiple clustering. In IJCAI International Joint Conference on Artificial Intelligence (Vol. 2019-August, pp. 4121–4127). International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2019/572

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free