Carbon Nanotube Supported Amorphous MoS2 via Microwave Heating Synthesis for Enhanced Performance of Hydrogen Evolution Reaction

24Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Amorphous molybdenum disulfide (MoS2) is a promising electrochemical catalyst for hydrogen evolution reaction (HER) due to more active sites exposed on the surface compared to its crystalline counterpart. In this study, a novel fast three-minute one-pot method is proposed to prepare the single-wall carbon nanotube- (SWCNT-) supported amorphous MoS2 via a microwave heating process. Compared to traditional hydro- or solvent thermal methods to prepare MoS2 which usually consume more than 10 hours, it is more promising for fast production. An overpotential at 10 mA/cm2 of amorphous MoS2@SWCNT is 178 mV, which is 99 mV and 22 mV lower than crystalline MoS2@SWCNT and pure amorphous MoS2, respectively. After running 1000 cycles of polarization, ~2% increase in overpotential is observed, indicating its good stability. The enhanced performance results from the beneficial combination of the SWCNT substrate and the amorphous microstructures. The introduction of SWCNT increases catalyst conductivity and prevents MoS2 aggregation. The amorphous microstructures of MoS2 prepared by a microwave heating method lead to more Mo edges or active sites exposed.

Cite

CITATION STYLE

APA

Tang, W., Jian, J., Chen, G., Bian, W., Yu, J., Wang, H., … Luo, H. (2021). Carbon Nanotube Supported Amorphous MoS2 via Microwave Heating Synthesis for Enhanced Performance of Hydrogen Evolution Reaction. Energy Material Advances, 2021. https://doi.org/10.34133/2021/8140964

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free