1. The effects of capsaicin, calcitonin gene-related peptide and substance P were studied via three parameters in the guinea-pig vas deferens: the overflow of ATP and of tritiated noradrenaline, the mechanical responses to field stimulation and the mechanical responses to exogenous noradrenaline and α,β-methylene ATP. 2. At 2 Hz, capsaicin inhibited the stimulus-evoked release of ATP, whereas it was without effect on the release of noradrenaline. At 20 Hz capsaicin did not affect the release of either of the co-transmitters. Capsaicin enhanced responses to α,β-methylene ATP, but not to exogenous noradrenaline. 3. Calcitonin gene-related peptide, like capsaicin, inhibited the release of ATP, but not noradrenaline at 2 Hz and was without effect on release at 20 Hz. However, calcitonin gene-related peptide inhibited responses to α,β-methylene ATP and was without effect on responses to exogenous noradrenaline. 4. Substance P had no effect on the release of either noradrenaline or ATP at either frequency. However, like capsaicin it enhanced responses to α,β-methylene ATP and was without effect on exogenous noradrenaline. 5. These results suggest that the actions of capsaicin on the guinea-pig isolated vas deferens are mediated via the release of both calcitonin gene-related peptide and substance P. Furthermore, as capsaicin and calcitonin gene-related peptide prejunctionally modulate purinergic, but not noradrenergic transmission, this suggests that the mechanisms for the storage and release of the sympathetic co-transmitters noradrenaline and ATP may not be the same.
CITATION STYLE
Ellis, J. L., & Burnstock, G. (1989). Modulation of neurotransmission in the guinea-pig vas deferens by capsaicin: involvement of calcitonin gene-related peptide and substance P. British Journal of Pharmacology, 98(2), 707–713. https://doi.org/10.1111/j.1476-5381.1989.tb12646.x
Mendeley helps you to discover research relevant for your work.