Identification and molecular cloning of a human selenocysteine insertion sequence-binding protein: A bifunctional role for DNA-binding protein B

54Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Prokaryotic and eukaryotic cells incorporate the unusual amino acid selenocysteine at a UGA codon, which conventionally serves as a termination signal. Translation of eukaryotic selenoprotein mRNA requires a nucleotide selenocysteine insertion sequence in the 3'-untranslated region. We report the molecular cloning of the binding protein that recognizes the selenocysteine insertion sequence element in human cellular glutathione peroxidase gene (GPX1) transcripts and its identification as DNA-binding protein B, a member of the EFI(A)/dbpBYB-1 family. The predicted amino acid sequence contains four arginine-rich RNA-binding motifs, and one segment shows strong homology to the human immunodeficiency virus Tat domain. Recombinant DNA-binding protein B binds the selenocysteine insertion sequence elements from the GPX1 and type I iodothyronine 5'-deiodinase genes in RNA electrophoretic mobility shift assays and competes with endogenous GPX1 selenocysteine insertion sequence binding activity in COS-1 cytosol extracts. Addition of antibody to DNA-binding protein B to COS-1 electromobility shift assays produces a slowly migrating 'supershift' band. The molecular cloning and identification of DNA-binding protein B as the first eukaryotic selenocysteine insertion sequence-binding protein opens the way to the elucidation of the entire complex necessary for the alternative reading of the genetic code that permits translation of selenoproteins.

Cite

CITATION STYLE

APA

Shen, Q., Wu, R., Leonard, J. L., & Newburger, P. E. (1998). Identification and molecular cloning of a human selenocysteine insertion sequence-binding protein: A bifunctional role for DNA-binding protein B. Journal of Biological Chemistry, 273(10), 5443–5446. https://doi.org/10.1074/jbc.273.10.5443

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free