Thermal properties of treatment wetlands operated under freezing conditions

1Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

The use of treatment wetlands (TWs) presents particular challenges in regions with sub-zero winter temperatures, due to reduced biological activity and risk of pipe breakage or clogging due to freezing. We studied the vertical temperature distribution in four pilot-scale TWs exposed to winter temperatures in order to determine the impact of operational system parameters and the role of insulation on heat conservation inside the filtering bed. The overall temperature pattern was similar in all wetlands, with a trend of increasing temperature from the surface toward the bottom during the cold season. No freezing was detected in the wetlands despite average daily temperatures as low as -20 °C. Influent water temperature and hydraulic loading had a stronger influence on TW temperatures in winter than air temperature. The vertical distribution of temperatures in TWs is more sensitive to hydraulic loading variation in the percolating operating condition than in the saturated flow with forced aeration configuration. Our results suggest that TW systems can remain operational under cold winter conditions provided the surface is properly insulated by vegetation, mulch and/or snow.

Cite

CITATION STYLE

APA

Grebenshchykova, Z., Forquet, N., Brisson, J., Xavier Lachapelle, T., Comeau, Y., & Chazarenc, F. (2023). Thermal properties of treatment wetlands operated under freezing conditions. Water Science and Technology, 88(8), 2054–2067. https://doi.org/10.2166/wst.2023.320

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free