An all fiber-optic immunosensor based on elliptical core helical intermediate-period fiber grating (E-HIPFG) is proposed for the specific detection of human immunoglobulin G (human IgG). E-HIPFGs are all-fiber transducers that do not include any additional coating materials or fiber ar-chitectures, simplifying the fabrication process and promising the stability of the E-HIPFG biosensor. For human IgG recognition, the surface of an E-HIPFG is functionalized by goat anti-human IgG. The functionalized E-HIPFG is tested by human IgG solutions with a concentration range of 10–100 μg/mL and shows a high sensitivity of 0.018 nm/(μg/mL) and a limit of detection (LOD) of 4.7 μg/mL. Notably, the functionalized E-HIPFG biosensor is found to be insensitive to environmental disturbances, with a temperature sensitivity of 2.6 pm/°C, a strain sensitivity of 1.2 pm/με, and a torsion sensitivity of −23.566 nm/(rad/mm). The results demonstrate the considerable properties of the immunosensor, with high resistance to environmental perturbations, indicating signifi-cant potential for applications in mobile biosensors and compact devices.
CITATION STYLE
Zhong, J., Liu, S., Zou, T., Yan, W., Zhou, M., Liu, B., … Wang, Y. (2022). All Fiber-Optic Immunosensors Based on Elliptical Core Helical Intermediate-Period Fiber Grating with Low-Sensitivity to Environmental Disturbances. Biosensors, 12(2). https://doi.org/10.3390/bios12020099
Mendeley helps you to discover research relevant for your work.