Experimental study on early-age crack of mass concrete under the controlled temperature history

58Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Thermal deformation under restrained conditions often leads to early-age cracking and durability problems in mass concrete structures. It is crucial to monitor accurately the evolution of temperature and thermal stresses. In this paper, experimental studies using temperature stress testing machine (TSTM) are carried out to monitor the generated thermal cracking in mass concrete. Firstly, components and working principle of TSTM were introduced. Cracking temperatures and stress reserves are selected as the main cracking evaluation indicators of TSTM. Furthermore, effects of temperature controlling measures on concrete cracking were quantitatively studied, which consider the concrete placing temperature (before cooling) and cooling rates (after cooling). Moreover, the influence of reinforcement on early-age cracking has been quantitatively analyzed using the TSTM. The experimental results indicate that the crack probability of reinforced concrete (RC) is overestimated. Theoretical calculations proved that the internal stress can transfer from concrete to reinforcement due to creep effect. Finally, the experimental results indicate that the reinforcement can improve the crack resistance of concrete by nearly 30% in the TSTM tests, and the ultimate tensile strain of RC is approximately 105% higher than that of plain concrete with the same mix proportions.

Cite

CITATION STYLE

APA

Shi, N., Ouyang, J., Zhang, R., & Huang, D. (2014). Experimental study on early-age crack of mass concrete under the controlled temperature history. Advances in Materials Science and Engineering, 2014. https://doi.org/10.1155/2014/671795

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free