A mechanistic model of photoinhibition

90Citations
Citations of this article
139Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A mechanistic model was developed, to simulate the main facets of photoinhibition in phytoplankton. Photoinhibition is modelled as a time dependent decrease in the initial slope of a photosynthesis versus irradiance curve, related to D1 (photosystem II reaction centre protein) damage and non-photochemical quenching. The photoinhibition model was incorporated into an existing ammonium-nitrate nutrition interaction model capable of simulating photoacclimation and aspects of nitrogen uptake and utilization. Hence the current model can simulate the effects of irradiance on photosynthesis from sub-saturating to inhibitory photon flux densities, during growth on different nitrogen sources and under nutrient stress. Model output conforms well to experimental data, allowing the extent of photoinhibition to be predicted under a range of nutrient and light regimes. The ability of the model to recreate the afternoon depression of photosynthesis and the enhancement of photosynthesis during fluctuating light suggests that these two processes are related to photoinhibition. The model may be used to predict changes in biomass and/or carbon fixation under a wide range of oceanographic situations, and it may also help to explain the progression to dominance of certain algal species, and bloom formation under defined irradiance and nutrient conditions.

Cite

CITATION STYLE

APA

Marshall, H. L., Geider, R. J., & Flynn, K. J. (2000). A mechanistic model of photoinhibition. New Phytologist, 145(2), 347–359. https://doi.org/10.1046/j.1469-8137.2000.00575.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free