Automatic Detection of Chronic Insomnia from Polysomnographic and Clinical Variables Using Machine Learning

4Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Insomnia is defined subjectively by the presence and frequency of specific clinical symptoms and an association with distress. Although sleep study data has shown some weak associations, no objective test can currently be used to predict insomnia. The purpose of this study was to use previously reported and relatively crafted insomnia-related polysomnographic variables in machine learning models to classify groups with and without insomnia. Demographics, diagnosed depression, Epworth Sleepiness Scale (ESS), and features derived from electroencephalography (EEG), arousals, and sleep stages from 3,407 sleep clinic patients (2,617 without insomnia and 790 insomnia patients based on responses to a set of questions) were included in this analysis. The number of features were reduced using pair-wise correlation and recursive feature elimination. Predictive value of three machine learning models (logistic regression, neural network, and support vector machine) was investigated, and the best performance was achieved with logistic regression, yielding a balanced accuracy of 71%. The most important features in predicting insomnia were depression, age, sex, duration of longest arousal, ESS score, and EEG power in theta and sigma bands across all sleep stages. Results indicate potential of machine learning-based screening for insomnia using clinical variables and EEG.

Cite

CITATION STYLE

APA

Hanif, U., Gimenez, U., Cairns, A., Lewin, D., Ashraf, N., & Mignot, E. (2023). Automatic Detection of Chronic Insomnia from Polysomnographic and Clinical Variables Using Machine Learning. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/EMBC40787.2023.10340587

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free