Abstract
In our study, Zr-based UiO-66 (Zr) was synthesized using terephthalic acid obtained from waste plastic. Thereafter, UiO-66/g-C3N4 composites were prepared by the solvothermal method, and their photocatalytic activity in the photodegradation of the chemical warfare agent simulant, dimethyl 4-nitrophenyl phosphate (DMNP), was evaluated. The as-synthesized UiO-66/g-C3N4 exhibited a high surface area (1440 m2 g−1) and a high capillary volume (1.49 cm3 g−1). The UiO-66/g-C3N4 samples absorbed a visible light band with bandgap energies of 2.13-2.88 eV. The as-synthesized UiO-66/g-C3N4 composites exhibited highly efficient degradation of DMNP with a short half-life (t1/2 of 2.17 min) at pH 7 under visible light irradiation. The trapping experiments confirmed that the h+ and ˙O2− radicals played an important role in the photocatalytic degradation of DMNP. The UiO-66/g-C3N4 catalyst simultaneously performed two processes: the hydrolysis and photocatalytic oxidation of DMNP in water. During irradiation, a p-n heterojunction between UiO-66 and g-C3N4 restricted the recombination of photogenerated electrons and holes, resulting in the enhancement in the degradation rate of DMNP.
Cite
CITATION STYLE
Van Le, D., Nguyen, M. B., Dang, P. T., Lee, T., & Nguyen, T. D. (2022). Synthesis of a UiO-66/g-C3N4 composite using terephthalic acid obtained from waste plastic for the photocatalytic degradation of the chemical warfare agent simulant, methyl paraoxon. RSC Advances, 12(35), 22367–22376. https://doi.org/10.1039/d2ra03483b
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.