COINSTAC: Decentralizing the future of brain imaging analysis

  • Ming J
  • Verner E
  • Sarwate A
  • et al.
N/ACitations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

In the era of Big Data, sharing neuroimaging data across multiple sites has become increasingly important. However, researchers who want to engage in centralized, large-scale data sharing and analysis must often contend with problems such as high database cost, long data transfer time, extensive manual effort, and privacy issues for sensitive data. To remove these barriers to enable easier data sharing and analysis, we introduced a new, decentralized, privacy-enabled infrastructure model for brain imaging data called COINSTAC in 2016. We have continued development of COINSTAC since this model was first introduced. One of the challenges with such a model is adapting the required algorithms to function within a decentralized framework. In this paper, we report on how we are solving this problem, along with our progress on several fronts, including additional decentralized algorithms implementation, user interface enhancement, decentralized regression statistic calculation, and complete pipeline specifications.

Cite

CITATION STYLE

APA

Ming, J., Verner, E., Sarwate, A., Kelly, R., Reed, C., Kahleck, T., … Calhoun, V. (2017). COINSTAC: Decentralizing the future of brain imaging analysis. F1000Research, 6, 1512. https://doi.org/10.12688/f1000research.12353.1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free