Sanguisorba officinalis L synergistically enhanced 5-fluorouracil cytotoxicity in colorectal cancer cells by promoting a reactive oxygen species-mediated, mitochondria-caspase-dependent apoptotic pathway

63Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Sanguisorba officinalis L. radix is a widely used herb called DiYu (DY) in China and has an extensive range of bioactivities, including anti-cancer, anti-inflammatory, and anti-oxidative activities. However, there is little evidence to support its anti-cancer effects against colorectal cancer (CRC). The first-line chemotherapeutic agent 5-fluorouracil (5-FU) is used to treat CRC, but its efficiency is hampered by acquired drug resistance. This study found that a water extract of DY exerted anti-proliferative effects against two CRC cell lines (HCT-116 and RKO), and it sensitized CRC cells to 5-FU therapy by activating a reactive oxygen species (ROS)-mediated, mitochondria-caspase-dependent apoptotic pathway. Co-treatment of DY and 5-FU significantly elevated ROS levels, up-regulated Bax/Bcl-2 ratio and triggered mitochondrial dysfunction, followed by a release of cytochrome c and up-regulation of proteins such as cleaved-caspase-9/3 and cleaved-PARP. Additionally, the induction of autophagy may be involved in mediating synergism of DY in HCT-116 cells. Gallic acid (GA), catechinic acid (CA) and ellagic acid (EA) were identified as the potential chief constituents responsible for the synergistic effects of DY. In conclusion, co-treatment of DY, specifically GA, CA and EA, with 5-FU may be a potential alternative therapeutic strategy for CRC by enhancing an intrinsic apoptotic pathway.

Cite

CITATION STYLE

APA

Liu, M. P., Liao, M., Dai, C., Chen, J. F., Yang, C. J., Liu, M., … Yao, M. C. (2016). Sanguisorba officinalis L synergistically enhanced 5-fluorouracil cytotoxicity in colorectal cancer cells by promoting a reactive oxygen species-mediated, mitochondria-caspase-dependent apoptotic pathway. Scientific Reports, 6. https://doi.org/10.1038/srep34245

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free