The technology of Artificial Intelligence (AI) brings tremendous possibilities for autonomous vehicle applications. One of the essential tasks of autonomous vehicle is environment perception using machine learning algorithms. Since the cyclists are the vulnerable road users, cyclist detection and tracking are important perception sub-tasks for autonomous vehicles to avoid vehicle-cyclist collision. In this paper, a robust method for cyclist detection and tracking is presented based on multi-layer laser scanner, i.e., IBEO LUX 4L, which obtains four-layer point cloud from local environment. First, the laser points are partitioned into individual clusters using Density-Based Spatial Clustering of Applications with Noise (DBSCAN) method based on subarea. Then, 37-dimensional feature set is optimized by Relief algorithm and Principal Component Analysis (PCA) to produce two new feature sets. Support Vector Machine (SVM) and Decision Tree (DT) classifiers are further combined with three feature sets, respectively. Moreover, Multiple Hypothesis Tracking (MHT) algorithm and Kalman filter based on Current Statistical (CS) model are applied to track moving cyclists and estimate the motion state. The performance of the proposed cyclist detection and tracking method is validated in real road environment.
CITATION STYLE
Zhang, M., Fu, R., Guo, Y., Wang, L., Wang, P., & Deng, H. (2020). Cyclist detection and tracking based on multi-layer laser scanner. Human-Centric Computing and Information Sciences, 10(1). https://doi.org/10.1186/s13673-020-00225-x
Mendeley helps you to discover research relevant for your work.