A review of lithium-ion battery state of health estimation and prediction methods

173Citations
Citations of this article
272Readers
Mendeley users who have this article in their library.

Abstract

Lithium-ion power batteries have been widely used in transportation due to their advantages of long life, high specific power, and energy. However, the safety problems caused by the inaccurate estimation and prediction of battery health state have attracted wide attention in academic circles. In this paper, the degradation mechanism and main definitions of state of health (SOH) were described by summarizing domestic and foreign literatures. The estimation and prediction methods of lithium-ion power battery SOH were discussed from three aspects: model-based methods, data-driven methods, and fusion technology methods. This review summarizes the advantages and disadvantages of the current mainstream SOH estimation and prediction methods. This paper believes that more innovative feature parameter extraction methods, multi-algorithm coupling, combined with cloud platform and other technologies will be the development trend of SOH estimation and prediction in the future, which provides a reference for health state estimation and prediction of lithium-ion power battery.

Cite

CITATION STYLE

APA

Yao, L., Xu, S., Tang, A., Zhou, F., Hou, J., Xiao, Y., & Fu, Z. (2021). A review of lithium-ion battery state of health estimation and prediction methods. World Electric Vehicle Journal, 12(3). https://doi.org/10.3390/wevj12030113

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free