We present a novel framework, Duplo, for the low-level post-link optimisation of OCaml programs, achieving a speedup of 7% and a reduction of at least 15% of the code size of widely-used OCaml applications. Unlike existing post-link optimisers, which typically operate on target-specific machine code, our framework operates on a Low-Level Intermediate Representation (LLIR) capable of representing both the OCaml programs and any C dependencies they invoke through the foreign-function interface (FFI). LLIR is analysed, transformed and lowered to machine code by our post-link optimiser, LLIR-OPT. Most importantly, LLIR allows the optimiser to cross the OCaml-C language boundary, mitigating the overhead incurred by the FFI and enabling analyses and transformations in a previously unavailable context. The optimised IR is then lowered to amd64 machine code through the existing target-specific code generator of LLVM, modified to handle garbage collection just as effectively as the native OCaml backend. We equip our optimiser with a suite of SSA-based transformations and points-to analyses capable of capturing the semantics and representing the memory models of both languages, along with a cross-language inliner to embed C methods into OCaml callers. We evaluate the gains of our framework, which can be attributed to both our optimiser and the more sophisticated amd64 backend of LLVM, on a wide-range of widely-used OCaml applications, as well as an existing suite of micro- and macro-benchmarks used to track the performance of the OCaml compiler.
CITATION STYLE
Licker, N., & Jones, T. M. (2020). Duplo: A framework for OCaml post-link optimisation. Proceedings of the ACM on Programming Languages, 4(ICFP). https://doi.org/10.1145/3408980
Mendeley helps you to discover research relevant for your work.