How to Train Your Flare Prediction Model: Revisiting Robust Sampling of Rare Events

  • Ahmadzadeh A
  • Aydin B
  • Georgoulis M
  • et al.
40Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

We present a case study of solar flare forecasting by means of metadata feature time series, by treating it as a prominent class-imbalance and temporally coherent problem. Taking full advantage of pre-flare time series in solar active regions is made possible via the Space Weather Analytics for Solar Flares (SWAN-SF) benchmark data set, a partitioned collection of multivariate time series of active region properties comprising 4075 regions and spanning over 9 yr of the Solar Dynamics Observatory period of operations. We showcase the general concept of temporal coherence triggered by the demand of continuity in time series forecasting and show that lack of proper understanding of this effect may spuriously enhance models’ performance. We further address another well-known challenge in rare-event prediction, namely, the class-imbalance issue. The SWAN-SF is an appropriate data set for this, with a 60:1 imbalance ratio for GOES M- and X-class flares and an 800:1 imbalance ratio for X-class flares against flare-quiet instances. We revisit the main remedies for these challenges and present several experiments to illustrate the exact impact that each of these remedies may have on performance. Moreover, we acknowledge that some basic data manipulation tasks such as data normalization and cross validation may also impact the performance; we discuss these problems as well. In this framework we also review the primary advantages and disadvantages of using true skill statistic and Heidke skill score, two widely used performance verification metrics for the flare-forecasting task. In conclusion, we show and advocate for the benefits of time series versus point-in-time forecasting, provided that the above challenges are measurably and quantitatively addressed.

Cite

CITATION STYLE

APA

Ahmadzadeh, A., Aydin, B., Georgoulis, M. K., Kempton, D. J., Mahajan, S. S., & Angryk, R. A. (2021). How to Train Your Flare Prediction Model: Revisiting Robust Sampling of Rare Events. The Astrophysical Journal Supplement Series, 254(2), 23. https://doi.org/10.3847/1538-4365/abec88

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free