Modeling Context Aware Dynamic Trust Using Hidden Markov Model

11Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

Modeling trust in complex dynamic environments is an important yet challenging issue since an intelligent agent may strategically change its behavior to maximize its profits. In this paper, we propose a context aware trust model to predict dynamic trust by using a Hidden Markov Model (HMM) to model an agent's interactions. Although HMMs have already been applied in the past to model an agent's dynamic behavior to greatly improve the traditional static probabilistic trust approaches, most HMM based trust models only focus on outcomes of the past interactions without considering interaction context, which we believe, reflects immensely on the dynamic behavior or intent of an agent. Interaction contextual information is comprehensively studied and integrated into the model to more precisely approximate an agent's dynamic behavior. Evaluation using real auction data and synthetic data demonstrates the efficacy of our approach in comparison with previous state-of-the-art trust mechanisms.

Cite

CITATION STYLE

APA

Liu, X., & Datta, A. (2012). Modeling Context Aware Dynamic Trust Using Hidden Markov Model. In Proceedings of the 26th AAAI Conference on Artificial Intelligence, AAAI 2012 (pp. 1938–1944). AAAI Press. https://doi.org/10.1609/aaai.v26i1.8395

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free