360° Image Reference-Based Super-Resolution Using Latitude-Aware Convolution Learned from Synthetic to Real

8Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

High-resolution (HR) 360° images offer great advantages wherever an omnidirectional view is necessary such as in autonomous robot systems and virtual reality (VR) applications. One or more 360° images in adjacent views can be utilized to significantly improve the resolution of a target 360° image. In this paper, we propose an efficient reference-based 360° image super-resolution (RefSR) technique to exploit a wide field of view (FoV) among adjacent 360° cameras. Effective exploitation of spatial correlation is critical to achieving high quality even though the distortion inherent in the equi-rectangular projection (ERP) is a nontrivial problem. Accordingly, we develop a long-range 360 disparity estimator (DE360) to overcome a large and distorted disparity, particularly near the poles. Latitude-aware convolution (LatConv) is designed to generate more robust features to circumvent the distortion and keep the image quality. We also develop synthetic 360° image datasets and introduce a synthetic-to-real learning scheme that transfers knowledge learned from synthetic 360° images to a deep neural network conducting super-resolution (SR) of camera-captured images. The proposed network can learn useful features in the ERP-domain using a sufficient number of synthetic samples. The network is then adapted to camera-captured images through the transfer layer with a limited number of real-world datasets.

Cite

CITATION STYLE

APA

Kim, H. J., Kang, J. W., & Lee, B. U. (2021). 360° Image Reference-Based Super-Resolution Using Latitude-Aware Convolution Learned from Synthetic to Real. IEEE Access, 9, 155924–155935. https://doi.org/10.1109/ACCESS.2021.3128574

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free