Previous investigations on "double-pulse" nanosecond (ns) laser drilling reported in the literature typically utilize double pulses of equal or similar pulse energies. In this paper, "double-pulse" ns laser drilling using double pulses with energies differing by more than ten times has been studied, where both postprocess workpiece characterizations and in situ time-resolved shadowgraph imaging observations have been performed. A very interesting physical phenomenon has been discovered under the studied conditions: the "double-pulse" ns laser ablation process, where the low-energy pulse precedes the high-energy pulse (called "low-high double-pulse" laser ablation) by a suitable amount of time, can produce significantly higher ablation rates than "high-low double-pulse" or "single-pulse" laser ablation under a similar laser energy input. In particular, "low-high double-pulse" laser ablation at a suitable interpulse separation time can drill through a ∼0.93 mm thick aluminum 7075 workpiece in less than 200 pulse pairs, while "high-low double-pulse" or "single-pulse" laser ablation cannot drill through the workpiece even using 1000 pulse pairs or pulses, respectively. This indicates that "low-high double-pulse" laser ablation has led to a significantly enhanced average ablation rate that is more than five times those for "single-pulse" or "high-low double-pulse" laser ablation. The fundamental physical mechanism for the ablation rate enhancement has been discussed, and a hypothesized explanation has been given.
CITATION STYLE
Liu, Z., Wu, B., Xu, R., Zhao, K., & Shin, Y. C. (2018). Microhole Drilling by Double Laser Pulses with Different Pulse Energies. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 140(9). https://doi.org/10.1115/1.4040483
Mendeley helps you to discover research relevant for your work.