A CNN-Architecture-Based Photovoltaic Cell Fault Classification Method Using Thermographic Images

11Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

Abstract

Photovoltaic (PV) cells are a major part of solar power stations, and the inevitable faults of a cell affect its work efficiency and the safety of the power station. During manufacturing and service, it is necessary to carry out fault detection and classification. A convolutional-neural-network (CNN)-architecture-based PV cell fault classification method is proposed and trained on an infrared image data set. In order to overcome the problem of the original dataset’s scarcity, an offline data augmentation method is adopted to improve the generalization ability of the network. During the experiment, the effectiveness of the proposed model is evaluated by quantifying the obtained results with four deep learning models through evaluation indicators. The fault classification accuracy of the CNN model proposed here has been drawn by the experiment and reaches 97.42%, and it is superior to that of the models of AlexNet, VGG 16, ResNet 18 and existing models. In addition, the proposed model has faster calculation, prediction speed and the highest accuracy. This method can well-identify and classify PV cell faults and has high application potential in automatic fault identification and classification.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Bu, C., Liu, T., Wang, T., Zhang, H., & Sfarra, S. (2023). A CNN-Architecture-Based Photovoltaic Cell Fault Classification Method Using Thermographic Images. Energies, 16(9). https://doi.org/10.3390/en16093749

Readers' Seniority

Tooltip

Researcher 3

43%

Lecturer / Post doc 2

29%

Professor / Associate Prof. 1

14%

PhD / Post grad / Masters / Doc 1

14%

Readers' Discipline

Tooltip

Engineering 4

57%

Computer Science 2

29%

Energy 1

14%

Article Metrics

Tooltip
Mentions
News Mentions: 1

Save time finding and organizing research with Mendeley

Sign up for free