Hierarchical self-assembly of a reflectin-derived peptide

1Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Reflectins are a family of intrinsically disordered proteins involved in cephalopod camouflage, making them an interesting source for bioinspired optical materials. Understanding reflectin assembly into higher-order structures by standard biophysical methods enables the rational design of new materials, but it is difficult due to their low solubility. To address this challenge, we aim to understand the molecular self-assembly mechanism of reflectin’s basic unit—the protopeptide sequence YMDMSGYQ—as a means to understand reflectin’s assembly phenomena. Protopeptide self-assembly was triggered by different environmental cues, yielding supramolecular hydrogels, and characterized by experimental and theoretical methods. Protopeptide films were also prepared to assess optical properties. Our results support the hypothesis for the protopeptide aggregation model at an atomistic level, led by hydrophilic and hydrophobic interactions mediated by tyrosine residues. Protopeptide-derived films were optically active, presenting diffuse reflectance in the visible region of the light spectrum. Hence, these results contribute to a better understanding of the protopeptide structural assembly, crucial for the design of peptide- and reflectin-based functional materials.

Cite

CITATION STYLE

APA

Dias, A. M. G. C., Moreira, I. P., Lychko, I., Lopes Soares, C., Nurrito, A., Moura Barbosa, A. J., … Roque, A. C. A. (2023). Hierarchical self-assembly of a reflectin-derived peptide. Frontiers in Chemistry, 11. https://doi.org/10.3389/fchem.2023.1267563

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free