Abstract
We investigated whether the mobilization of endothelial progenitor cells (EPCs) by exogenous erythropoietin (Epo) promotes the repair of injured endothelium. Recombinant human Epo was injected (1000 IU/kg for the initial 3 days) after wire injury of the femoral artery of mice. Neointimal formation was inhibited by Epo to 48% of the control (P<0.05) in an NO-dependent manner. Epo induced a 1.4-fold increase in reendothelialized area of day 14 denuded vessels, 55% of which was derived from bone marrow (BM) cells. Epo increased the circulating Sca-1/Flk-1 EPCs (2.0-fold, P<0.05) with endothelial properties NO dependently. BM replacement by GFP- or β-galactosidase-overexpressing cells showed that Epo stimulated both differentiation of BM-derived EPCs and proliferation of resident ECs. BM-derived ECs increased 2.2- to 2.7-fold (P<0.05) in the Epo-induced neoendothelium, where the expression of Epo receptor was upregulated. Epo induced Akt/eNOS phosphorylation and NO synthesis on EPCs and exerted an antiapoptotic action on wire-injured arteries. In conclusion, Epo treatment inhibits the neointimal hyperplasia after arterial injury in an NO-dependent manner by acting on the injured vessels and mobilizing EPCs to the neo-endothelium. © 2006 American Heart Association, Inc.
Author supplied keywords
Cite
CITATION STYLE
Urao, N., Okigaki, M., Yamada, H., Aadachi, Y., Matsuno, K., Matsui, A., … Matsubara, H. (2006). Erythropoietin-mobilized endothelial progenitors enhance reendothelialization via Akt-endothelial nitric oxide synthase activation and prevent neointimal hyperplasia. Circulation Research, 98(11), 1405–1413. https://doi.org/10.1161/01.RES.0000224117.59417.f3
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.