Influence of the rake angle on nanocutting of fe single crystals: A molecular-dynamics study

9Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Using molecular dynamics simulation, we study the cutting of an Fe single crystal using tools with various rake angles α. We focus on the (110)[001] cut system, since here, the crystal plasticity is governed by a simple mechanism for not too strongly negative rake angles. In this case, the evolution of the chip is driven by the generation of edge dislocations with the Burgers vector b =12 [111], such that a fixed shear angle of φ = 54.7◦ is established. It is independent of the rake angle of the tool. The chip form is rectangular, and the chip thickness agrees with the theoretical result calculated for this shear angle from the law of mass conservation. We find that the force angle χ between the direction of the force and the cutting direction is independent of the rake angle; however, it does not obey the predictions of macroscopic cutting theories, nor the correlations observed in experiments of (polycrystalline) cutting of mild steel. Only for (strongly) negative rake angles, the mechanism of plasticity changes, leading to a complex chip shape or even suppressing the formation of a chip. In these cases, the force angle strongly increases while the friction angle tends to zero.

Cite

CITATION STYLE

APA

Alhafez, I. A., & Urbassek, H. M. (2020). Influence of the rake angle on nanocutting of fe single crystals: A molecular-dynamics study. Crystals, 10(6), 1–15. https://doi.org/10.3390/cryst10060516

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free