Abstract
Integrated photonic platforms have proliferated in recent years, each demonstrating its unique strengths and shortcomings. Given the processing incompatibilities of different platforms, a formidable challenge in the field of integrated photonics still remains for combining the strengths of different optical materials in one hybrid integrated platform. Silicon carbide is a material of great interest because of its high refractive index, strong second- and third-order nonlinearities, and broad transparency window in the visible and near-infrared range. However, integrating silicon carbide (SiC) has been difficult, and current approaches rely on transfer bonding techniques that are time-consuming, expensive, and lacking precision in layer thickness. Here, we demonstrate high-index amorphous silicon carbide (a-SiC) films deposited at 150 °C and verify the high performance of the platform by fabricating standard photonic waveguides and ring resonators. The intrinsic quality factors of single-mode ring resonators were in the range of Qint = (4.7-5.7) × 105 corresponding to optical losses between 0.78 and 1.06 dB/cm. We then demonstrate the potential of this platform for future heterogeneous integration with ultralow-loss thin SiN and LiNbO3 platforms.
Author supplied keywords
Cite
CITATION STYLE
Lopez-Rodriguez, B., van der Kolk, R., Aggarwal, S., Sharma, N., Li, Z., van der Plaats, D., … Zadeh, I. E. (2023). High-Quality Amorphous Silicon Carbide for Hybrid Photonic Integration Deposited at a Low Temperature. ACS Photonics, 10(10), 3748–3754. https://doi.org/10.1021/acsphotonics.3c00968
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.