Abstract
Bermuda grass (Cynodon dactylon) is notoriously difficult to control with some commonly used herbicides. We cloned a cytochrome P450 gene from Bermuda grass, named P450-N-Z1, which was found to confer tolerance to multiple herbicides in transgenic Arabidopsis. These herbicides include: (1) acetolactate synthase (ALS) inhibitor herbicides nicosulfuron and penoxsulam; (2) phydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide mesotrione; (3) synthetic auxin herbicide dicamba; (4) photosynthesis inhibitor bentazon. We further generated transgenic soybean plants expressing P450-N-Z1, and found that these transgenic soybean plants gained robust tolerance to nicosulfuron, flazasulfuron, and 2,4-dichlorophenoxyacetic acid (2,4-D) in greenhouse assays. A field trial demonstrated that transgenic soybean is tolerant to flazasulfuron and 2,4-D at 4-fold and 2-fold the recommended rates, respectively. Furthermore, we also demonstrated that flazasulfuron and dicamba are much more rapidly degraded in vivo in the transgenic soybean than in non-transgenic soybean. Therefore, P450-N-Z1 may be utilized for engineering transgenic crops for herbicide tolerance.
Author supplied keywords
Cite
CITATION STYLE
Zheng, T., Yu, X., Sun, Y., Zhang, Q., Zhang, X., Tang, M., … Shen, Z. (2022). Expression of a Cytochrome P450 Gene from Bermuda Grass Cynodon dactylon in Soybean Confers Tolerance to Multiple Herbicides. Plants, 11(7). https://doi.org/10.3390/plants11070949
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.