Facilitating the acidic oxygen reduction of Fe-N-C catalysts by fluorine-doping

63Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

Abstract

As the alternatives to expensive Pt-based materials for the oxygen reduction reaction (ORR), iron/nitrogen co-doped carbon catalysts (FeNC) with dense FeNx active sites are promising candidates to promote the commercialization of proton exchange membrane fuel cells. Herein, we report a synthetic approach using perfluorotetradecanoic acid (PFTA)-modified metal-organic frameworks as precursors for the synthesis of fluorine-doped FeNC (F-FeNC) with improved ORR performance. The utilization of PFTA surfactants causes profound changes of the catalyst structure including F-doping into graphitic carbon, increased micropore surface area and Brunauer-Emmett-Teller (BET) surface area (up to 1085 m2 g-1), as well as dense FeNx sites. The F-FeNC catalyst exhibits an improved ORR activity with a high E1/2 of 0.83 V (vs. RHE) compared to the pristine FeNC material (E1/2 = 0.80 V). A fast decay occurs in the first 10 000 potential cycles for the F-FeNC catalyst, but high durability is still maintained up to another 50 000 cycles. Density functional theory calculations reveal that the strongly withdrawing fluorine atoms doped on the graphitic carbon can optimize the electronic structure of the FeNx active center and decrease the adsorption energy of ORR intermediates.

Cite

CITATION STYLE

APA

Tao, X., Lu, R., Ni, L., Gridin, V., Al-Hilfi, S. H., Qiu, Z., … Müllen, K. (2022). Facilitating the acidic oxygen reduction of Fe-N-C catalysts by fluorine-doping. Materials Horizons, 9(1), 417–424. https://doi.org/10.1039/d1mh01307f

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free