Catalytic hydrogen atom transfer to alkenes: A roadmap for metal hydrides and radicals

247Citations
Citations of this article
163Readers
Mendeley users who have this article in their library.

Abstract

Hydrogen atom transfer from a metal hydride (MHAT) has emerged as a powerful, if puzzling, technique in chemical synthesis. In catalytic MHAT reactions, earth-abundant metal complexes generate stabilized and unstabilized carbon-centered radicals from alkenes of various substitution patterns with robust chemoselectivity. This perspective combines organic and inorganic perspectives to outline challenges and opportunities, and to propose working models to assist further developments. We attempt to demystify the putative intermediates, the basic elementary steps, and the energetic implications, especially for cage pair formation, collapse and separation. Distinctions between catalysts with strong-field (SF) and weak-field (WF) ligand environments may explain some differences in reactivity and selectivity, and provide an organizing principle for kinetics that transcends the typical thermodynamic analysis. This blueprint should aid practitioners who hope to enter and expand this exciting area of chemistry.

Cite

CITATION STYLE

APA

Shevick, S. L., Wilson, C. V., Kotesova, S., Kim, D., Holland, P. L., & Shenvi, R. A. (2020, December 14). Catalytic hydrogen atom transfer to alkenes: A roadmap for metal hydrides and radicals. Chemical Science. Royal Society of Chemistry. https://doi.org/10.1039/d0sc04112b

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free