Numerical Study of the Effect of High Gravity in Material Extrusion System and Polymer Characteristics during Filament Fabrication

1Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Polymer science plays a crucial role in the understanding and numerical study of material extrusion processes that have revolutionized additive manufacturing (AM). This study investigated the impact of high-gravity conditions on material extrusion and conducted a numerical study by referring to the development of a high-gravity material extrusion system (HG-MEX). In this study, we evaluated the polymeric characteristics of HG-MEX. By analyzing the interplay between polymer behavior and gravity, we provide insights into the effects of high gravity on extrusion processes, including filament flow, material deposition, and the resulting fabrication characteristics. The established numerical study of high-gravity material extrusion in additive manufacturing is a meaningful and valuable approach for improving the quality and efficiency of the process. This study is unique in that it incorporates material surface characteristics to represent the performance and contact with polymer science in additive manufacturing. The findings presented herein contribute to a broader understanding of polymer science and its practical implications for HG-MEX under various gravitational conditions.

Cite

CITATION STYLE

APA

Jiang, X., & Koike, R. (2023). Numerical Study of the Effect of High Gravity in Material Extrusion System and Polymer Characteristics during Filament Fabrication. Polymers, 15(14). https://doi.org/10.3390/polym15143037

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free