Abstract
In this paper, V2O5 sol was firstly prepared using vanadyl sulfate as a vanadium source by modified sol-gel method at room temperature. Then flower-like V2O5 powders were prepared by coagulating as-prepared sol with anhydrous ethanol and subsequent annealing crystallization. The X-ray diffraction analysis indicated that V2O5 powders exhibited orthorhombic crystal structure after annealing at 450 °C. The experimental data obtained from both field emission scanning electron microscopy and high-resolution transmission electron microscopy identified that V2O5 powders were approximately flower-like in shape and about 5 μm in size. Besides, the Brunauer-Emmett-Teller specific surface area of flowerlike V2O5 powders was 24.25 m2/g. According to Uv-Vis spectroscopy, the degradation rate of toluidine blue O (TBO) on as-prepared flower-like V2O5 powders during 10 h of visible light irradiation with an intensity of 15.4 mW/m2 was 88%, which was faster than those over P25 (46%) as a comparison. In addition, the mineralization process of TBO was investigated, which primarily consisted of demethylation and ring-opening oxidation processes, and confirmed by liquid chromatograph-mass spectrometry. The precipitation-oxidation-peptization, coagulation, and crystallization processes were proposed as the formation mechanism for the preparation of flower-like V2O5.
Author supplied keywords
Cite
CITATION STYLE
Li, Y., Kuang, J. L., Lu, Y., & Cao, W. B. (2017). Facile synthesis, characterization of flower-like vanadium pentoxide powders and their photocatalytic behavior. Acta Metallurgica Sinica (English Letters), 30(10), 1017–1026. https://doi.org/10.1007/s40195-017-0611-6
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.