Abstract
Film morphology and the corresponding structural configuration can profoundly affect the optical performance, especially the random lasing action in organic-inorganic metal-halide perovskite thin films. They can be controlled in both micro- and nano-scale by manipulating different processing parameters such as the ratios of engineered solvent mixtures, spin-coating speed and backplane temperature. With the optimized parameters, the synthesized bare perovskite thin films can achieve room-temperature random lasing action with the energy pumping threshold down to 0.9 mJ cm-2 and the corresponding β factor is estimated to be about 0.14. The bare films also show a long-time lasing reliability, maintaining lasing intensity after an optical pumping of 12 × 105 pulses. Meanwhile, in the lifetime test under ambient conditions, the bare films can sustain up to 7 days without any sealing package. Moreover, the perovskite thin films can also be synthesized on flexible substrates with the total area up to 100 cm2, paving a potential way for fabricating large-area and flexible random lasers in speckle-free laser projection and imaging. This journal is
Cite
CITATION STYLE
Hong, Y. H., & Kao, T. S. (2020). Room-temperature random lasing of metal-halide perovskites: Via morphology-controlled synthesis. Nanoscale Advances, 2(12), 5833–5840. https://doi.org/10.1039/d0na00794c
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.