Antibiotic resistance profiles of Pseudomonas aeruginosa isolated from various Greek aquatic environments

  • Pappa O
  • Vantarakis A
  • Galanis A
  • et al.
N/ACitations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A large number of antibiotic-resistant P. aeruginosa isolates are continuously discharged into natural water basins mainly through sewage. However, the environmental reservoirs of antibiotic resistance factors are poorly understood. In this study, the antibiotic resistance patterns of 245 isolates from various aquatic sites in Greece were analysed. Twenty-three isolates with resistance patterns cefotaxime–aztreonam–ceftazidime, cefotaxime–aztreonam–meropenem, cefotaxime– ceftazidime–meropenem, cefotaxime–ceftazidime–aztreonam–meropenem and cefotaxime–ceftazidime–cefepime– aztreonam–meropenem were screened phenotypically for the presence of extended spectrum β-lactamases (ESBLs), while 77 isolates with various resistant phenotypes were screened for the presence of class 1 and class 2 integrase genes. The aztreonam-resistant isolates and ESBL producers were the main resistant phenotypes in all habitats tested. In 13/77 isolates class 1 integron was detected, while all tested isolates were negative for the presence of the class 2 integrase gene. CTX-M group 9 β-lactamase was present in a small number of isolates (three isolates) highlighting the emergence of ESBL genes in aquatic environments. As a conclusion, it seems that Greek water bodies could serve as a potential reservoir of resistant P. aeruginosa isolates posing threats to human and animal health.

Cite

CITATION STYLE

APA

Pappa, O., Vantarakis, A., Galanis, A., Vantarakis, G., & Mavridou, A. (2016). Antibiotic resistance profiles of Pseudomonas aeruginosa isolated from various Greek aquatic environments. FEMS Microbiology Ecology, 92(6), fiw086. https://doi.org/10.1093/femsec/fiw086

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free