Abstract
Bayesian inference for rank-order problems is frustrated by the absence of an explicit likelihood function. This hurdle can be overcome by assuming a latent normal representation that is consistent with the ordinal information in the data: the observed ranks are conceptualized as an impoverished reflection of an underlying continuous scale, and inference concerns the parameters that govern the latent representation. We apply this generic data-augmentation method to obtain Bayes factors for three popular rank-based tests: the rank sum test, the signed rank test, and Spearman's (Formula presented.).
Author supplied keywords
Cite
CITATION STYLE
van Doorn, J., Ly, A., Marsman, M., & Wagenmakers, E. J. (2020). Bayesian rank-based hypothesis testing for the rank sum test, the signed rank test, and Spearman’s ρ. Journal of Applied Statistics, 47(16), 2984–3006. https://doi.org/10.1080/02664763.2019.1709053
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.