Residual metallic contamination of transferred chemical vapor deposited graphene

259Citations
Citations of this article
271Readers
Mendeley users who have this article in their library.

Abstract

Integration of graphene with Si microelectronics is very appealing by offering a potentially broad range of new functionalities. New materials to be integrated with the Si platform must conform to stringent purity standards. Here, we investigate graphene layers grown on copper foils by chemical vapor deposition and transferred to silicon wafers by wet etching and electrochemical delamination methods with respect to residual submonolayer metallic contaminations. Regardless of the transfer method and associated cleaning scheme, time-of-flight secondary ion mass spectrometry and total reflection X-ray fluorescence measurements indicate that the graphene sheets are contaminated with residual metals (copper, iron) with a concentration exceeding 10 13 atoms/cm 2. These metal impurities appear to be partially mobile upon thermal treatment, as shown by depth profiling and reduction of the minority charge carrier diffusion length in the silicon substrate. As residual metallic impurities can significantly alter electronic and electrochemical properties of graphene and can severely impede the process of integration with silicon microelectronics, these results reveal that further progress in synthesis, handling, and cleaning of graphene is required to advance electronic and optoelectronic applications.

Cite

CITATION STYLE

APA

Lupina, G., Kitzmann, J., Costina, I., Lukosius, M., Wenger, C., Wolff, A., … Mehr, W. (2015). Residual metallic contamination of transferred chemical vapor deposited graphene. ACS Nano, 9(5), 4776–4785. https://doi.org/10.1021/acsnano.5b01261

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free