Seasonal dynamics modifies fate of oxygen, nitrate, and organic micropollutants during bank filtration — temperature-dependent reactive transport modeling of field data

32Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Bank filtration is considered to improve water quality through microbially mediated degradation of pollutants and is suitable for waterworks to increase their production. In particular, aquifer temperatures and oxygen supply have a great impact on many microbial processes. To investigate the temporal and spatial behavior of selected organic micropollutants during bank filtration in dependence of relevant biogeochemical conditions, we have set up a 2D reactive transport model using MODFLOW and PHT3D under the user interface ORTI3D. The considered 160-m-long transect ranges from the surface water to a groundwater extraction well of the adjacent waterworks. For this purpose, water levels, temperatures, and chemical parameters were regularly measured in the surface water and groundwater observation wells over one and a half years. To simulate the effect of seasonal temperature variations on microbial mediated degradation, we applied an empirical temperature factor, which yields a strong reduction of the degradation rate at groundwater temperatures below 11 °C. Except for acesulfame, the considered organic micropollutants are substantially degraded along their subsurface flow paths with maximum degradation rates in the range of 10−6 mol L−1 s−1. Preferential biodegradation of phenazone, diclofenac, and valsartan was found under oxic conditions, whereas carbamazepine and sulfamethoxazole were degraded under anoxic conditions. This study highlights the influence of seasonal variations in oxygen supply and temperature on the fate of organic micropollutants in surface water infiltrating into an aquifer.

Cite

CITATION STYLE

APA

Barkow, I. S., Oswald, S. E., Lensing, H. J., & Munz, M. (2021). Seasonal dynamics modifies fate of oxygen, nitrate, and organic micropollutants during bank filtration — temperature-dependent reactive transport modeling of field data. Environmental Science and Pollution Research, 28(8), 9682–9700. https://doi.org/10.1007/s11356-020-11002-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free