Efficient Multiterminal Spectrum Splitting via a Nanowire Array Solar Cell

30Citations
Citations of this article
62Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Nanowire-based solar cells opened a new avenue for increasing conversion efficiency and rationalizing material use by growing different III-V materials on silicon substrates. Here, we propose a multiterminal nanowire solar cell design with a theoretical conversion efficiency of 48.3% utilizing an efficient lateral spectrum splitting between three different III-V material nanowire arrays grown on a flat silicon substrate. This allows choosing an ideal material combination to achieve the proper spectrum splitting as well as fabrication feasibility. The high efficiency is possible due to an enhanced absorption cross-section of standing nanowires and optimization of the geometric parameters. Furthermore, we propose a multiterminal contacting scheme that can be fabricated with a technology close to standard CMOS. As an alternative we also consider a single power source with a module level voltage matching. These new concepts open avenues for next-generation solar cells for terrestrial and space applications.

Cite

CITATION STYLE

APA

Dorodnyy, A., Alarcon-Lladó, E., Shklover, V., Hafner, C., Fontcuberta I Morral, A., & Leuthold, J. (2015). Efficient Multiterminal Spectrum Splitting via a Nanowire Array Solar Cell. ACS Photonics, 2(9), 1284–1288. https://doi.org/10.1021/acsphotonics.5b00222

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free