Abstract
We describe the synthesis and biochemical and cellular profiling of five partially reduced or demethylated analogs of the marine macrolide (−)-zampanolide (ZMP). These analogs were derived from 13-desmethylene-(−)-zampanolide (DM-ZMP), which is an equally potent cancer cell growth inhibitor as ZMP. Key steps in the synthesis of all compounds were the formation of the dioxabicyclo[15.3.1]heneicosane core by an intramolecular HWE reaction (67–95 % yield) and a stereoselective aza-aldol reaction with an (S)-BINOL-derived sorbamide transfer complex, to establish the C(20) stereocenter (24–71 % yield). As the sole exception, for the 5-desmethyl macrocycle, ring-closure relied on macrolactonization; however, elaboration of the macrocyclization product into the corresponding zampanolide analog was unsuccessful. All modifications led to reduced cellular activity and lowered microtubule-binding affinity compared to DM-ZMP, albeit to a different extent. For compounds incorporating the reactive enone moiety of ZMP, IC50 values for cancer cell growth inhibition varied between 5 and 133 nM, compared to 1–12 nM for DM-ZMP. Reduction of the enone double bond led to a several hundred-fold loss in growth inhibition. The cellular potency of 2,3-dihydro-13-desmethylene zampanolide, as the most potent analog identified, remained within a ninefold range of that of DM-ZMP.
Author supplied keywords
Cite
CITATION STYLE
Brütsch, T. M., Cotter, E., Lucena-Agell, D., Redondo-Horcajo, M., Davies, C., Pfeiffer, B., … Altmann, K. H. (2023). Synthesis and Structure-Activity Relationship Studies of C(13)-Desmethylene-(−)-Zampanolide Analogs. Chemistry - A European Journal, 29(36). https://doi.org/10.1002/chem.202300703
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.