A review on object detection for autonomous mobile robot

8Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

Abstract

The advancement of autonomous mobile robots (AMR) is vastly being discovered and applied to several industries. AMR contributes to the development of artificial intelligence (AI), which focuses on the growth of human-interaction systems. However, it is safe to understand that mobile robots work closely in real-time and under changing surroundings. Similarly, some limitations may affect the efficiency of mobile robots. Thus, to improve the system's efficiency and accuracy, mobile robots should adopt the ability to detect incoming obstacles accurately. This paper presents the findings of a brief technology review aimed at identifying the current state of the art and future needs for AMR in object detection. This review paper is presented in the form of a narrative-literature review. Review articles were collected from 2015 until 2022 from journals or conference papers from well-known sources like IEEE Xplore, Science Direct, Scopus, and Web of Science (WOS). The analysis of the articles was discussed in four main topics, AI, object detection, AMR, and deep learning.

Cite

CITATION STYLE

APA

Abdul-Khalil, S., Abdul-Rahman, S., Mutalib, S., Kamarudin, S. I., & Kamaruddin, S. S. (2023, September 1). A review on object detection for autonomous mobile robot. IAES International Journal of Artificial Intelligence. Institute of Advanced Engineering and Science. https://doi.org/10.11591/ijai.v12.i3.pp1033-1043

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free