Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells

232Citations
Citations of this article
97Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Recent evidence has shown that amniotic fluid may be a novel source of fetal stem cells for therapeutic transplantation. We previously developed a two-stage culture protocol to isolate a population of amniotic fluid-derived mesenchymal stem cells (AFMSCs) from second-trimester amniocentesis. AFMSCs maintain the capacity to differentiate into multiple mesenchymal lineages and neuron-like cells. It is unclear whether amniotic fluid contains heterogeneous populations of stem cells or a subpopulation of primitive stem cells that are similar to marrow stromal cells showing the behavior of neural progenitors. In this study, we showed a subpopulation of amniotic fluid-derived stem cells (AF-SCs) at the single-cell level by limiting dilution. We found that NANOG- and POU5F1 (also known as OCT4)-expressing cells still existed in the expanded single cell-derived AF-SCs. Aside from the common mesenchymal characteristics, these clonal AF-SCs also exhibit multiple phenotypes of neural-derived cells such as NES, TUBB3, NEFH, NEUNA60, GALC, and CFAP expressions both before and after neural induction. Most importantly, HPLC analysis showed the evidence of dopamine release in the extract of dopaminergic-induced clonal AF-SCs. The results of this study suggest that besides being an easily accessible and expandable source of fetal stem cells, amniotic fluid will provide a promising source of neural progenitor cells that may be used in future cellular therapies for neurodegenerative diseases and nervous system injuries. © 2006 by the Society for the Study of Reproduction, Inc.

Cite

CITATION STYLE

APA

Tsai, M. S., Hwang, S. M., Tsai, Y. L., Cheng, F. C., Lee, J. L., & Chang, Y. J. (2006). Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biology of Reproduction, 74(3), 545–551. https://doi.org/10.1095/biolreprod.105.046029

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free