Gravity-based precise cell manipulation system enhanced by in-phase mechanism

8Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

This paper proposes a gravity-based system capable of generating high-resolution pressure for precise cell manipulation or evaluation in a microfluidic channel. While the pressure resolution of conventional pumps for microfluidic applications is usually about hundreds of pascals as the resolution of their feedback sensors, precise cell manipulation at the pascal level cannot be done. The proposed system successfully achieves a resolution of 100 millipascals using water head pressure with an in-phase noise cancelation mechanism. The in-phase mechanism aims to suppress the noises from ambient vibrations to the system. The proposed pressure system is tested with a microfluidic platform for pressure validation. The experimental results show that the in-phase mechanism effectively reduces the pressure turbulence, and the pressure-driven cell movement matches the theoretical simulations. Preliminary experiments on deformability evaluation with red blood cells under incremental pressures of one pascal are successfully performed. Different deformation patterns are observed from cell to cell under precise pressure control.

Cite

CITATION STYLE

APA

Mizoue, K., Phan, M. H., Tsai, C. H. D., Kaneko, M., Kang, J., & Chung, W. K. (2016). Gravity-based precise cell manipulation system enhanced by in-phase mechanism. Micromachines, 7(7). https://doi.org/10.3390/mi7070116

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free