Adaptive stochastic management of the storage function for a large open reservoir using an artificial intelligence method

4Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The design and evaluation of algorithms for adaptive stochastic control of reservoir function of the water reservoir using artificial intelligence methods (learning fuzzy model and neural networks) are described in this article. This procedure was tested on an artificial reservoir. Reservoir parameters have been designed to cause critical disturbances during the control process, and therefore the influences of control algorithms can be demonstrated in the course of controlled outflow of water from the reservoir. The results of the stochastic adaptive models were compared. Further, stochastic model results were compared with a resultant course of management obtained using the method of classical optimisation (differential evolution), which used stochastic forecast data from real series (100% forecast). Finally, the results of the dispatcher graph and adaptive stochastic control were compared. Achieved results of adaptive stochastic management provide inspiration for continuing research in the field.

Cite

CITATION STYLE

APA

Kozel, T., & Stary, M. (2019). Adaptive stochastic management of the storage function for a large open reservoir using an artificial intelligence method. Journal of Hydrology and Hydromechanics, 67(4), 314–321. https://doi.org/10.2478/johh-2019-0021

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free